All patients with aortic stenosis requiring a bioprosthetic heart valve should have a TAVR

It has Already Happened and Is Justified! Pieter Kappetein, Erasmus MC, Rotterdam, The Netherlands

Study Devices

Transfemoral Transapical Edwards SAPIEN THV RetroFlex 1 Ascendra 23 and 26 mm valves 22 and 24 F sheaths 24 and 26 F sheaths

PARTNER Study Design

Study Flow

* Censored = Patient alive at last contact but no information available within FU window

Baseline Patient Characteristics *Demographics*

	T (n	<mark>AVR</mark> =348)	S (n	<mark>AVR</mark> =351)
Characteristic	n		n	
Age – years (Mean ± SD)	348	83.6 ± 6.8	349	84.5 ± 6.4
Male	201	57.8%	198	56.7%
NYHA Class III or IV	328	94.3%	328	94.0%
Previous CABG	148	42.5%	152	43.6%
Cerebrovascular disease	96	29.4%	87	26.8%
Peripheral vascular disease	149	43.2%	142	41.6%
STS Score (Mean ± SD)	347	11.8 ± 3.3	349	11.7 ± 3.5

All-Cause Mortality (ITT) All Patients

Median Survival All Patients

All-Cause Mortality (ITT) Transfemoral Patients

Subgroup Analysis All-Cause Mortality

				Hazard Ratic)	Interaction
				for TAVR	[95% CI]	p-value
Overall (N=699)			<u> </u>	1.03	[0.85-1.24]	
Age						
< 85 (N=358)			←	1.00	[0.76-1.30]	0 71
≥ 85 (N=339)		-		1.07	[0.82-1.39]	0.71
Sex						
Male (N=399)		-		1.20	[0.94-1.54]	0.07
Female (N=300)		_	0.84	[0.62-1.12]	0.07
BMI						
≤ 25 (N=302)		_	- -	1.17	[0.90-1.54]	0 30
> 25 (N=390)			<u> </u>	0.99	[0.76-1.29]	0.55
STS						
≤ 11 (N=353)				0.95	[0.72-1.26]	0 38
> 11 (N=346)		_	→	1.12	[0.87-1.45]	0.50
				····		
0.1	TAVR Better	1	.0	SAVR Better	10.0	

Subgroup Analysis

All-Cause Mortality

	Hazard Rati	0	Interactior
	for TAVR	[95% CI]	p-value
Overall (N=699)	- 1.03	[0.85-1.24]	
Peripheral Vasc. Dis.			
No (N=395)	0.79	[0.62-1.02]	-0.01
Yes (N=291) -	— 1.49	[1.11-2.01]	<0.01
Pulmonary Hypertension			
No (N=360) —	— 1.32	[1.01-1.72]	0.01
Yes (N=337)	0.76	[0.55-1.04]	0.01
Mod / Sev MR			
No (N=536) —	<u> </u>	[0.89-1.38]	0 11
Yes (N=133)	- 0.77	[0.51-1.17]	0.11
Prior CABG or PCI			
No (N=283)	0.85	[0.64-1.14]	0.10
Yes (N=414)		[0.91-1.50]	0.10
Implant Approach			
Transapical (N = 207)	 1.37	[0.98-1.92]	0.05
Transfemoral (N = 492) —	0.91	[0.72-1.14]	0.05
	· · · · ·		
0.1 1.0		10.0	
IAVR Better	SAVR Better		

All Stroke (ITT) All Patients

NYHA Over Time (ITT) Survivors

Mortality and Post Procedural PVL TAVR Patients

Mortality and None-Trace Total AR Transfemoral Patients

Edwards SAPIEN 3 Transcatheter Heart Valve

Evolution of the Edwards Balloon-Expandable Transcatheter Valves

Edwards Commander Delivery System

SAPIEN 3 Valve Size	23 mm	26 mm	29 mm
Edwards eSheath	14F	14F	16F
Minimum Access Vessel Diameter	5.5 mm	5.5 mm	6.0 mm

The PARTNER II S3 Trial Study Design

Study Flow: S3HR & S3i 30 Day Patient Status

Baseline Patient Characteristics S3HR Patients

Mortality and Stroke: S3HR At 30 Days (As Treated Patients)

Mortality: S3HR & S3i At 30 Days (As Treated Patients)

All-Cause Mortality at 30 Days Edwards SAPIEN Valves (As Treated Patients)

CoreValve® Valve-in-Valve

The following presentation outlines best practices and procedural considerations for the implantation for the CoreValve[®] System in failed stented aortic bioprostheses.

INTERNATIONAL. CAUTION: For distribution only in markets where CoreValve[®] is approved. Not for distribution in U.S. or Japan. ©Medtronic, Inc. 2013. All Rights Reserved. Non destiné au marché français.

CoreValve US Pivotal Trial High Risk 2-Year Results

Patient Flow

CoreValve US Clinical Trials

ACC 2015

All-Cause Mortality

All Stroke

Major Stroke

All-Cause Mortality STS ≤7%

CoreValve US Clinical Trials ACC 2015

Conclusions

At 2 years for patients with symptomatic severe AS at increased risk of surgery;

- The superior survival seen at 1 year for TAVR over SAVR is maintained
- All stroke was less with TAVR over SAVR but major stroke showed no difference
- MACCE was significantly less with TAVR over SAVR
- Hemodynamics were superior for TAVR over SAVR at all time points without any structural valve failure
- Post-procedural AR showed a decrease in the TAVR group between 30 days and 1 year and this low level of moderate or severe PVL was maintained at 2 years
- TAVR was favored in every subgroup analysis

European Experience

TAVR in lower risk patients It's already happened!

MINI-FOCUS ON TAVI

CLINICAL RESEARCH

A 3-Center Comparison of 1-Year Mortality Outcomes Between Transcatheter Aortic Valve Implantation and Surgical Aortic Valve Replacement on the Basis of Propensity Score Matching Among Intermediate-Risk Surgical Patients

Nicolo Piazza, MD, PHD,*† Bindu Kalesan, PHD,‡ Nicolas van Mieghem, MD,§ Stuart Head, MSc,|| Peter Wenaweser, MD,¶ Thierry P. Carrel, MD,# Sabine Bleiziffer, MD,*† Peter P. de Jaegere, MD, PHD,§ Brigitta Gahl,# Robert H. Anderson, MD, PHD,** Arie-Pieter Kappetein, MD, PHD,|| Ruediger Lange, MD, PHD,*† Patrick W. Serruys, MD, PHD,§ Stephan Windecker, MD,¶ Peter Jüni, MD‡ Munich, Germany: Bern, Switzerland; Rotterdam, the Netherlands; Montreal, Canada; and Newcastle-Upon-Tyne, United Kingdom

STRUCTURAL HEART DISEASE

Acute and Late Outcomes of Transcatheter Aortic Valve Implantation (TAVI) for the Treatment of Severe Symptomatic Aortic Stenosis in Patients at High- and Low-Surgical Risk

GERHARD SCHYMIK, M.D.,¹ HOLGER SCHRÖFEL, M.D.,² JAN S. SCHYMIK,³ RAINER WONDRASCHEK,¹ TIM SÜSELBECK, M.D.,⁴ RÜDIGER KIEFER,² VERONIKA BALTHASAR, M.D.,² ARMIN LUIK, M.D.,¹ HERBERT POSIVAL, M.D.,² and CLAUS SCHMITT, M.D.¹

From the ¹Medical Clinic IV, Municipal Hospital Karlsruhe, Germany; ²Clinic for Cardiac Surgery Karlsruhe, Germany; ³University of Munich, Germany; and ⁴Department of Medicine, University Medical Centre Mannheim, Germany

Improvements in Transcatheter Aortic Valve Implantation Outcomes in Lower Surgical Risk Patients

A Glimpse Into the Future

Ruediger Lange, MD, PHD, Sabine Bleiziffer, MD, Domenico Mazzitelli, MD, Yacine Elhmidi, MD, Anke Opitz, MD, Marcus Krane, MD, Marcus-Andre Deutsch, MD, Hendrik Ruge, MD, Gernot Brockmann, MD, Bernhard Voss, MD, Christian Schreiber, MD, Peter Tassani, MD, PHD, Nicolo Piazza, MD, PHD

Munich, Germany

Clinical outcomes of patients with estimated low or intermediate surgical risk undergoing transcatheter aortic valve implantation

Peter Wenaweser^{1†*}, Stefan Stortecky^{1†}, Sarah Schwander¹, Dik Heg², Christoph Huber³, Thomas Pilgrim¹, Steffen Gloekler¹, Crochan J. O'Sullivan¹, Bernhard Meier¹, Peter Jüni², Thierry Carrel³, and Stephan Windecker^{1,2}

Transcatheter vs surgical aortic valve replacement in intermediate-surgical-risk patients with aortic stenosis: A propensity score–matched case-control study

Azeem Latib, MB ChB, ^{a,b,f} Francesco Maisano, MD, ^{c,f} Letizia Bertoldi, MD, ^b Andrea Giacomini, MD, ^c Joanne Shannon, MD, ^a Micaela Cioni, MD, ^c Alfonso Ielasi, MD, ^b Filippo Figini, MD, ^{a,b} Kensuke Tagaki, MD, ^a Annalisa Franco, MD, ^d Remo Daniel Covello, MD, ^d Antonio Grimaldi, MD, ^d Pietro Spagnolo, MD, ^c Gill Louise Buchannan, MD, ^b Mauro Carlino, MD, ^b Jlaide Chieffo, MD, ^b Matteo Montorfano, MD, ^b Ottavio Alfieri, MD, ^c and Antonio Colombo, MD^{a,b} *Milan, Italy*

Transcatheter aortic valve implantation versus surgical aortic valve replacement for severe aortic stenosis: Results from an intermediate risk propensity-matched population of the Italian OBSERVANT study

Paola D'Errigo ^a, Marco Barbanti ^{h.c.}*, Marco Ranucci ^d, Francesco Onorati ^e, Remo Daniel Covello ^f, Stefano Rosato ^a, Corrado Tamburino ^{h.c.}, Francesco Santini ^e, Gennaro Santoro ^g, Fulvia Seccareccia ^a and on behalf of the OBSERVANT Research Group

¹Wenaweser, et al., *Eur Heart J* 2013; 34: 1894-905; ²Lange, et al., *J Am Coll Cardiol* 2012; 59: 280-7; ³Piazza, et al., *J Am Coll Cardiol Intv* 2013; 6: 443-51; ⁴D'Errigo, et al., *Int J Cardiol* 2013: 167: 1945-62; epub; ⁵Latib, et al., *Am Heart J* 2012; 164: 910-7; Schymik, et al., *J Interv Cardiol* 2012; 25: 364-74

Retrospective Risk-Stratification

Lower risk patients have favorable outcomes

Improvements in Transcatheter Aortic Valve Implantation Outcomes in Lower Surgical Risk Patients

A Glimpse Into the Future

Ruediger Lange, MD, PHD, Sabine Bleiziffer, MD, Domenico Mazzitelli, MD, Yacine Elhmidi, MD, Anke Opitz, MD, Marcus Krane, MD, Marcus-Andre Deutsch, MD, Hendrik Ruge, MD, Gernot Brockmann, MD, Bernhard Voss, MD, Christian Schreiber, MD, Peter Tassani, MD, PHD, Nicolo Piazza, MD, PHD

Munich, Germany

Lange et al. J Am Coll Cardiol 2012; 59:280-7

TAVR in lower risk patients Outcomes are better

	Munich ¹			
	Higher RiskLower Risk(n=105)(n=105)			
STS (%)	7.13 ± 5.4	→ 4.8 ± 2.6		
Log EuroSCORE (%)	25.44 ± 16.0	17.8 ± 12.0		
30 Day Mortality (%)	11.4	→ 3.8		
Total Vascular Complications (%)	28.6	14.7		
Stroke / TIA (%)	6.7	1		

¹Lange, et al., *J Am Coll Cardiol* 2012; 59: 280-7 ²Wenaweser, et al., *Eur Heart J* 2013; 34: 1894-905;

CoreValve Advance Registry STS < 7% vs. STS > 7%

Baseline Characteristics CoreValve ADVANCE Registry

Characteristic, % or mean ± SD	All Patients N=995	STS ≤7 N=697	STS >7 N=298	p*
Age (yrs)	81.1 ± 6.4	80.0 ± 6.4	83.5 ± 5.8	<0.001
Female	50.7	46.1	61.4	<0.001
Logistic EuroSCORE	19.3 ± 12.3	16.0 ± 9.6	27.1 ± 14.2	<0.001
STS	6.4 ± 4.4	4.3 ± 1.5	11.3 ± 5.0	<0.001
NYHA III or IV	80.0	76.3	88.5	<0.001
Diabetes	31.2	29.2	35.8	0.041
CAD	57.8	56.4	60.9	0.185
PVD	19.9	17.7	25.1	0.007
Cerebrovascular Disease	13.3	11.3	17.9	0.005
Pulmonary Hypertension	12.9	11.1	16.9	0.015
COPD	22.8	17.1	36.1	<0.001
Creatinine Clearance < 20ml/min	14.4	10.2	24.3	<0.001
Atrial Fibrillation	33.6	30.6	40.5	0.002

2-Year All-Cause Mortality CoreValve ADVANCE Registry

CoreValve ADVANCE Study

European Experience

Durability

Studies reporting no valve failures at 1,2 and 3 years

- Gurvitch et al. Circulation 2010;122:1319-27
- Thielmann et al. Ann Thorac Surg 2009;88:1468-1474
- Webb et al. Circulation 2007;116:755-763
- Buellesfeld et al. JACC 2011;57:1650-1657
- Ussia et al. Eur Heart J 2012;33:969-976
- Ussia et al. EuroIntervetion 2012;7:1285-1292
- Kodali et al. NEJM 2012;366:1686-1695
- Nietlispach et al. JACC Cardiovasc Interv 2012;5:582-590 (autopsy 20 pts)

Kornowski, EuroPCR 2013

Baseline Demographics at Time of VIV

	CoreValve n=213	SAPIEN n=246
Age (yrs)	77.6 ± 10.0	77.6 ± 9.7
Gender (% male)	53.1%	59.0%
LogEuroSCORE	31.1 ± 16.8	33.0 ± 18.9
STS score (%)	12.8 ± 10.6	11.9 ± 9.2
Diabetes Mellitus	31.1%	26.5%
Peripheral Vascular Disease	17.9%	32.6%
Chronic Renal Failure	38.0%	57.3%
Previous CVA	12.2%	11.3%
NYHA III/IV	33.9%	91.5%

Median time from SAVR to VIV TAVI was 9 yrs (IQR 6-12)

Kornowski, EuroPCR 2013

Choice of the patient

PARTNER I A Mortality Surgery versus TAVR

Primary Endpoint: 1 Year All-cause Mortality

ACC 2014

Conclusions-1

 A systematic fall in surgical risk scores is evident (Europe > US)

 "Lower" risk patients are currently being treated (Europe > US)

• Patients with lower risk scores may have other reasons not to undergo surgery

Conclusion-2

- Clinical outcomes in patients with lower surgical risk scores are excellent
- Offering TAVR to intermediate surgical risk patients is justified if performed within the confines of a Heart Team
- Appropriate surgical and TAVR risk scores are lacking and may provide physicians better guidance in the treatment of patients

